Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aqua(trifluoroacetato)triphenyltin-2,2'-bipyridine (2/2)

Chin Fei Chee, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=168 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.028$
$w R$ factor $=0.077$
Data-to-parameter ratio $=15.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{~F}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}$.$2 \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$, the coordinated water molecule forms a hydrogen bond to the N atom of each of the two N -heterocycles $\left[\mathrm{O}_{\text {water }} \cdots \mathrm{N}=2.754\right.$ (3) and 2.795 (3) \AA]; the pyridyl rings of the N -heterocycle are twisted by $34.2(1)^{\circ}$. The Sn atom is fivecoordinate in a trans $-\mathrm{C}_{3} \mathrm{SnO}_{2}$ trigonal-bipyramidal geometry.

Comment

The aquatrifluoroacetatotriphenyltin entity forms a dinuclear hydrogen-bonded complex with 1,10-phenanthroline (Ng et al., 1996) and a mononuclear complex with $2,2^{\prime}: 6^{\prime} 2^{\prime \prime}$-terpyridine (Chee et al., 2003). The formation of a mononuclear complex in the case of the fused-ring heterocycle can probably be attributed to the inability of the ligand to form two hydrogen bonds to the water molecule owing to its small 'bite'. The water molecule in the $2,2^{\prime}$-bipyridine analog, (I), is similarly unable to interact with the potentially bidentate ligand. Instead, it interacts with a second ligand to furnish a centrosymmetric dinuclear complex (Fig. 1). The pyridyl rings are twisted by $34.2(1)^{\circ}$; the large twist apparently allows the acceptor N atoms to approach the water molecule $\left[\mathrm{O}_{\text {water }} \cdot \cdot \mathrm{N}\right.$ $=2.754$ (3) and 2.795 (3) Å] (Fig. 2); the hydrogen-bonding distances are somewhat shorter than those [2.809 (6) and 2.814 (6) \AA A found in the 1,10 -phenanthroline complex $\left[\mathrm{Sn} \leftarrow \mathrm{O}_{\text {water }}=2.335\right.$ (4) Å] (Ng et al., 1996). In the terpyridine complex, the two outer rings are twisted with respect to the central pyridyl ring for their N atoms to form hydrogen bonds to the water molecule.

Experimental

The title compound was obtained by heating triphenyltin trifluoroacetate ($2.31 \mathrm{~g}, 5 \mathrm{~mol}$) and $2,2^{\prime}$-bipyridine ($0.78 \mathrm{~g}, 5 \mathrm{mmol}$) in a small volume of acetone. The compound was recrystallized from ethanol (m.p. 388-390 K).

Received 14 March 2003

 Accepted 24 March 2003 Online 31 March 2003

Figure 1
ORTEPII (Johnson, 1976) plot of the title adduct, with ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. The unlabeled part of the hydrogen-bonded dimer is related to the labeled part by the symmetry code $(1-x, 1-y, 1-z)$.

Figure 2
ORTEPII (Johnson, 1976) plot of the diaquabis(2,2'-bipyridine) moiety, with ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. O1w $\cdots \mathrm{N} 1=2.795$ (3) and $\mathrm{O} 1 w \cdots \mathrm{~N} 2^{\mathrm{i}}=$ 2.754 (3) A , and $\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{~N} 1=153$ (2) and $\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{~N} 2^{\mathrm{i}}=$ $164(3)^{\circ}$. [Symmetry code: (i) $1-x, 1-y, 1-z$.]

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{~F}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot-$	$Z=1$
$2 \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$	$D_{x}=1.540 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1274.42$	Mo $K \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 6120
$a=11.556(1) \AA$	reflections
$b=11.662(1) \AA$	$\theta=1.8-26.4^{\circ}$
$c=12.387(1) \AA$	$\mu=0.98 \mathrm{~mm}^{-1}$
$\alpha=101.524(1)^{\circ}$	$T=168(2) \mathrm{K}$
$\beta=101.037(1)^{\circ}$	Block, colorless
$\gamma=117.313(1)^{\circ}$	$0.60 \times 0.29 \times 0.10 \mathrm{~mm}$
$V=1374.3(2) \AA^{\circ}$	

Data collection

Bruker AXS area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.767, T_{\max }=0.906$
17712 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.077$
$S=1.02$
5484 reflections
360 parameters

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Sn1-C7	$2.120(3)$	$\mathrm{Sn} 1-\mathrm{O} 1$	$2.189(2)$
$\mathrm{Sn} 1-\mathrm{C} 1$	$2.133(3)$	$\mathrm{Sn} 1-\mathrm{O} 1 w$	$2.335(2)$
$\mathrm{Sn} 1-\mathrm{C} 13$	$2.115(3)$		
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 13$	$114.0(1)$	$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{O} 1$	$93.5(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 7$	$114.1(1)$	$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{O} 1 w$	$86.0(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{O} 1$	$89.3(1)$	$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{O} 1$	$98.2(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{O} 1 w$	$89.3(1)$	$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{O} 1 w$	$83.6(1)$
$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{C} 13$	$130.5(1)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 1 w$	$178.1(1)$

The water H atoms were located and refined, subject to the restraints $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA. The aromatic H atoms were positioned geometrically, and were allowed to ride on their parent C atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Dr Jan Wikaira of the University of Canterbury for the diffraction measurements, and the University of Malaya (Nos. F0146/2002B and F0717/2002A) for supporting this work.

References

Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chee, C. F., Lo, K. M. \& Ng, S. W. (2003). Acta Cryst. E59, m174-m175.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ng, S. W., Kumar Das, V. G. \& Kennard, C. H. L. (1996). Main Group Met. Chem. 19, 107-111.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

